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TP-ML: A machine-learning-based tool to identify
threonine proteases using sequence-derived optimal

features
Ahmad Firoz, Adeel Malik, Nitin Mahajan, Le Thi Phan, Hani Mohammed Ali, Chang-Bae Kim, Balachandran

Manavalan

Abstract—Threonine proteases (TPs) are enzymes vital for
several biological processes and diseases including Alzheimer’s
disease and cancer. Their potential to target and degrade proteins
intracellularly makes them valuable for various therapeutic and
industrial applications. However, traditional experimental meth-
ods for identifying and characterizing novel TPs are exhaustive,
time-consuming, and expensive. To address this, we developed
TP-ML, a support vector machine-based prediction tool that
can differentiate TP from non-TP sequences. We generated
a benchmark dataset and calculated the physicochemical and
compositional features using primary amino acid sequences.
Subsequently, a comparison was made between the two feature
selection approaches to identify the optimal feature sets from
the original encodings. These optimal features were then used
to train five different machine-learning classifiers, each assessed
independently. TP-ML was selected as the best model showing
consistent performance during cross-validation and independent
evaluation, and achieved an accuracy of 0.934 and 0.888, respec-
tively. We anticipate TP-ML to be a powerful tool for identifying
TPs, aiding in their experimental characterization and industrial
application exploration. TP-ML predictor is freely accessible at
https://procarb.org/TP-ML/.
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I. INTRODUCTION

PROTEOLYSIS is one of the most important biological
reactions, facilitating the degradation of proteins into

smaller polypeptides or amino acids (AAs) via cellular en-
zymes called proteases (also known as proteolytic enzymes
and peptidases). These enzymes catalyze the hydrolysis of pep-
tide bonds by targeting the carbonyl group of the peptide [1],
[2]. They are ubiquitously distributed in cellular compartments
to perform significant biological processes. Genomic analysis
revealed the presence of >900 protease genes and >1600
protease inhibitory genes in human and mouse genomes, un-
derscoring the critical role of proteolysis in regulating cellular
function [3]. Proteases specifically cleave proteins either from
the N-terminal (aminopeptidases) or C-terminal (carboxypepti-
dases) and in the middle of the molecule (endopeptidases) [4].
Based on the nature of the AA present in the active site of
the enzyme and the mechanism of the peptide bond cleavage,
proteases are categorized as aspartate (Asp), cysteine (Cys),
glutamic acid (Glu), serine (Ser), threonine (Thr), proteases,
as well as matrix metalloproteases [5]. For Cys, Ser, and
Thr proteases, the key AA residue acts as a nucleophile,
whereas in others, key AAs trigger a water molecule which
then works as a nucleophile [6], [7]. Proteases are imperative
in diverse key processes such as cell cycle progression, cell
proliferation, DNA replication, tissue remodeling, hemostasis,
and the immune response [8].

Threonine proteases (TPs), a class of endopeptidases, are
contained within clan PB as they utilize the N-terminal threo-
nine as the active site. They are commonly found in bacteria,
yeast, and other living organisms. The prototype members of
TP enzymes are the catalytic subunits of eukaryotic protea-
somes and are an essential part of the protein turnover system
[9]. According to the peptide database [10], TPs are classified
into 6 families: T1 (subfamilies T1A and T1B), T2, T3, T5,
T7, and T8. TPs use a catalytic charge relay system to activate
secondary hydroxyl nucleophiles for catalysis. The active site
of these proteases contains a unique threonine residue that
acts as a nucleophile to cleave peptide bonds in substrates. The
mechanism of catalysis is a two-step process: (i) formation of a
covalent acyl-enzyme intermediate as a result of a nucleophile
attack on the substrate and (ii) hydrolysis of the intermediate
to revive the free enzyme and emancipation of the product
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[11]. Therefore, these sites play an essential role in multiple
catalytic subunits of the proteasome. TPs degrade cellular
proteins, which are tagged through a complex modification
(i.e., polyubiquitination). As the name suggests, polyubiqui-
tination adds a series of ubiquitin molecules to the protein
targeted for degradation. The expression of most proteins is
controlled by the ubiquitin-proteasome system, which includes
ubiquitin, the E1, E2, and E3 ubiquitin ligase machinery, and
deubiquitinating enzymes. Proteosome assembles into a large
complex to position its substrates and uses a Thr-Glu/Asp-Lys
triad. The enzyme structure can be capped (26S proteasome)
or uncapped (20S proteasome). The 20S proteasome core is
made up of four rings attached to seven different proteins.
The outer rings are composed of two α rings (α1–7 subunits),
and two inner rings are composed of β rings (β1–7 subunits).
Four out of seven β subunits are catalytically inactive (β3,
β4, β6, and β7). The catalytically active β subunits (β1,
β2, β5) are stacked into the basic 20S core [11]–[13]. It is
important to note that each subunit is encoded by different
genes, thereby altering the proteasome’s catalytic properties
and diversity. The tertiary structure shows the presence of
an alpha/beta/beta/alpha sandwich, where the beta-sheet has
four strands and an active site. This structure has been
demonstrated like the Ntn hydrolases in the PB clan which
include penicillin acylase and glycosylasparaginase. Various
posttranslational modifications, including phosphorylation, N-
acetylation, glycosylation, ubiquitination, and more have been
observed for these protein subunits [14].

Apart from proteasome, Testes-specific protease 50 (TSP50)
is another important member of TPs which shares protein
sequences and structures with many Ser proteases [15]. Physi-
ologically, TSP50 is expressed in spermatocytes, while various
reports have shown the high expression in more than 90% of
breast cancer, colorectal cancer, and cervical and gastric cancer
tissues [16]–[18]. The catalytic triad of TSP50, especially
Thr310, plays a critical role in its protease activity [15], [19].
Li et al (2012) have demonstrated that T310A mutation in
TSP50 impairs its ability to promote cell proliferation, colony
formation, and tumorigenicity [15]. In addition, TSP50 gene
locus 3p21.31 has been demonstrated as a susceptible locus
for colorectal cancer in the Chinese population [20].

Under diseased conditions, endogenous inhibitor check-
points fail, resulting in a skewed protease-antiprotease balance.
Overexpression or dysregulated activity of proteases is demon-
strated to play an important role in various diseases like high
blood pressure, diabetes, infections, and cancer. Considering
their inevitable role in various diseases, this class of enzymes
can be exploited as potential drug targets. Usage of several
proteases and inhibitors have been applied in various food
and drug industries. Proteases account for 60% of the total
enzyme market including 25 US Food and Drug Adminis-
tration (FDA)-approved products [21], [22]. Bortezomib, a
synthetic compound, is the first US FDA-approved proteasome
inhibitor used as therapy for multiple myeloma (MM) and
relapsed/refractory MM and mantle cell lymphoma. Another
emerging application of TPs is in biocatalysis, where they can
be used to cleave specific bonds in complex molecules and
produce modified proteins with specific biological activities

[7], [23].
In this study, we introduce TP-ML, the first machine-

learning (ML)-based tool designed to predict TPs utilizing
sequence-based optimal features (Figure 1). The develop-
ment of such a computational method is imperative as tra-
ditional experimental techniques are laborious, costly, and
time-consuming. These computational approaches offer alter-
native strategies for the rapid identification and annotation
of novel sequences. Currently, available computational tools
like BLAST and HMMER can support identifying sequences,
but their effectiveness is restrained to cases where there is a
sufficient degree of similarity between the target and query
sequences. Consequently, ML-based methods are considered
robust substitutes for such classification tasks. We anticipate
that TP-ML will serve as a valuable and efficient tool to iden-
tify TPs, thereby assisting the exploration of their industrial
and functional applications. The TP-ML is freely accessible at
https://procarb.org/TP-ML/.

II. METHODS

A. Dataset acquisition

The protein sequence datasets were downloaded from the
MEROPS version 12.4 database [10]. The members of TPs
constitute the positive dataset whereas the remaining fam-
ilies of proteolytic enzymes constitute the negative dataset
(non-TP proteins). Since the length of sequences in positive
data is in the range of 100-1000 AAs, we selected negative
dataset sequences within the same length range. After merging
both datasets we removed redundant sequences using CD-
HIT version 4.8.1 [24]. All sequences exhibiting >40% se-
quence identity were excluded from the analysis. Redundant
sequence removal resulted in an imbalanced dataset with 685
positive and approximately 41,000 negative sequences. To
generate a balanced dataset, 750 negative sequences were
randomly selected from the non-TP proteins. The final dataset
comprises 685 positive and 750 negative sequences, which
were subsequently divided into training (1005 sequences) and
independent validation (430 sequences) sets.

B. Feature encodings

We employed ten different sequence-derived feature
encodings to train the ML classifiers. The ‘protr’ package
[25] was used to transform various length sequences
into fixed length feature vectors. These features represent
the key characteristics of a protein sequence as detailed below:

1) Amino acid composition (AAC): The AAC of a protein
sequence is defined as a count of each AA for each TP and
non-TP protein sequence, normalized by the total length of the
protein sequence [26]. AAC has a fixed length of 20D feature
vector, and mathematically it is expressed as:

AAC(i) =
Ri

L
(1)

where Ri represents the number of AAs of type i, and L
denotes protein sequence length.
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Fig. 1: Overview of TP-ML. It involves the following steps: (1) Dataset preparation; (2) Feature extraction and model
construction; (3) Final model selection and webserver development.

2) Pseudo-amino acid composition (PseAAC): PseAAC
descriptors are also known as the type 1 pseudo-AA
composition and were first proposed by Chou [27] to predict
membrane protein type and protein subcellular localization.
PseAAC represents a blend of a set of separate sequence
correlation factors and the 20 elements of the traditional
AAC. In general, these complementary factors are a series
of rank different correlation factors along a protein sequence
[27], [28]. However, they can also represent any fusion of
other components as long as they can exhibit some kind of
sequence order effects.

3) Amphiphilic pseudo-amino acid composition
(APseAAC): APseAAC is also known as the type 2
pseudo-AA composition and was also first proposed by Chou
[28] to predict enzyme subfamily classes. APseAAC features
include 20 + 2λ discrete numbers. Among these, the first 20
also represent the elements of the typical AA frequency, and
the next 2λ numbers represent a set of correlation factors that
mirror distinct hydrophobicity and hydrophilicity distribution
arrangements along a protein sequence.

4) Autocorrelation (AutoC): The AutoC encodings collect
information regarding the physicochemical properties of a
protein chain, which may improve the performance of an ML
model [29]. The AutoC descriptors can be broadly grouped
into three categories:

(i) Moran AutoC encodings:

AC(d) =

N−d∑
i=1

PiPi+d, d = 1, 2, . . . , nlag (2)

where d is the autocorrelation lag; Pi and Pi+d are the AA
properties at position i and i+d; nlag represents the maximum
value of the lag.

(ii) Moreau-Broto AutoC descriptors:

I(d) =
1

N−d

∑N−d
i=1 (Pi − P )(Pi+d − P )

1
N

∑N
i=1(Pi − P )2

, d = 1, 2, . . . , 30

(3)
(iii) Geary AutoC descriptors:

C(d) =

1
2(N−d)

∑N−d
i=1 (Pi − Pi+d)

2

1
N

∑N
i=1(Pi − P )2

, d = 1, 2, . . . , 30

(4)
P is the average value of property P denoted as P =

∑N
i=1 Pi

N .

5) Composition (C), Transition (T), and Distribution (D)
(CTD): Since their first application in the protein folding
classes [30], [31], CTD descriptors have been exploited in
several bioinformatics applications [32]–[38]. The 20 naturally
occurring AAs in CTD descriptors are divided into three
groups (polar, neutral, and hydrophobicity) based on seven
distinct physicochemical properties such as solvent accessibil-
ity, polarizability, polarity, hydrophobicity, charge, normalized
van der Waals volume, and secondary structure (Table S1).
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In CTD, C corresponds to the percentage composition of
a target protein sequence’s hydrophobic, neutral, and polar
residues. It can be mathematically expressed as:

C(a) =
Za

K
, a ∈ {neutral, polar, hydrophobic} (5)

where Za is the number of AAs of type a in the given sequence.
In CTD, T comprises three values (hydrophobic, neutral,

and polar). A transition from a neutral group to a hydrophobic
group is the frequency with which a hydrophobic residue is
followed by a neutral residue or vice versa. The transitions
between neutral and polar groups, and polar and hydrophobic
groups, are also described similarly. Mathematically, T can be
defined as follows:

T (ab) =
Zab + Zba

K − 1
, (6)

a, b ∈ {(polar, neutral), (neutral, hydrophobic), (hydrophobic, polar)}
Zab and Zba represent the number of dipeptides encoded as
ab and ba in the sequences.

Finally, D in CTD comprises five values for each of
the three classes and estimates the percentage of a target
protein sequence length within which residues about an
explicit attribute are found within 25, 50, 75, and 100% of
their position. Overall, CTD generates 147-dimensional (D)
features (21 x 7), and each physico-chemical property is
characterized by a 21D feature vector.

6) Conjoint triad (CTriad): Shen et al. [39] first exploited
CTriad encodings for predicting protein-protein interactions.
For any target protein sequence, CTriad encodings represent
a vector space containing descriptors of AAs. The 20 AAs
are clustered based on their side chain volumes and dipoles
to reduce the vector space. Eventually, in CTriad encoding,
a 343D feature vector is generated for a target protein chain.
CTriad encodings can be expressed mathematically as:

di =
fi−min{f1,f2,...,f343}

max{f1,f2,...,f343}−min{f1,f2,...,f343} , i = 1, 2, . . . , 343
(7)

where fi (i=1, 2, 3, ..., 343) is the frequency of occurrence of
each triad.

7) Dipeptide composition (DPC): DPC is calculated as
the frequency of any two naturally occurring AAs observed
in a protein chain. In each sequence, there are 20 x 20
combinations of AA pairs giving rise to a 400D feature vector
[40]. Mathematically, DPC can be defined as:

DPC(ab) =
zab

K − 1
(8)

where Zab represents the number of dipeptides encoded as ab
in a given sequence, and K is the protein sequence length.

8) Quasi-sequence order (QSO): Recognizing the fact that
several numbers of sequence order patterns exist in biological
sequences, it is impractical to add this information directly
into an ML classifier [41], [42]. Therefore, to address this
issue, QSO is exploited to indirectly incorporate the sequence
order information [43]. QSO encodings are estimated by
using the Grantham distance matrix and Schneider-Wrede

distance matrix for each pair of 20 naturally occurring
AAs [25], [44]. The former contains information about the
chemical distance, whereas the latter matrix computes the
physicochemical properties such as polarity, hydrophobicity,
and hydrophilicity [45].

9) Sequence order coupling number (SOCN): The dth rank
sequence-order-coupling number is defined as:

τd =

N−d∑
i=1

(di,i+d)
2
, d = 1, 2, . . . ,maxlag (9)

where di,i+d is the entry in a given distance matrix
representing the distance between the amino acids at position
i and i + d, maxlag exhibits the maximum value of the lag,
and N is the length of the protein sequence. It should be
noted that the length of the protein sequence must not be less
than maxlag.

10) Hybrid encodings: This encoding was created by com-
bining all the nine features listed in section II (B1-B9). The
hybrid encodings form a 1920D feature vector which was also
used for training different ML classifiers.

C. Machine-learning classifiers

In the present study, we tested five ML classifiers using
the caret package in R [46].

1) K-nearest neighbor (KNN): KNN is one of the simplest
and fastest types of ML classifiers and can be utilized
for both supervised and unsupervised learning [47]. This
approach aims to find k nearest neighbors in a dataset
when compared to a new sample [48]. Distances between
examples are computed for each feature using a distance
metric like Euclidean, Manhattan, or Mahalanobis [49]. The
only hyper-parameter available for tuning in KNN is the value
of k itself. Determining a reasonable equilibrium between
underfitting and overfitting depends on the optimal value of
the k parameter [50]. A smaller value of k can lead to noise
points and if the k value is too large, the neighborhood may
include points from other classes. One of the key advantages
of KNN is that there is no cost associated with the learning
process.

2) Naı̈ve Bayes (NB): NB is a type of probabilistic
classification algorithm based on Bayes’ theorem which
assumes that the presence of a specific feature in a class is
independent of the presence of any other descriptor [51]. This
conditional independence assures that how one descriptor
influences a result in no way interacts with how another
variable impacts the analogous outcome [52]. In NB, the
penultimate result is the outcome of the impartial contribution
from each feature [53]. NB streamlines predictive modeling
issues to escape the curse of dimensionality [52]. NB classifier
can be best exploited for bigger datasets which may have
millions of data samples or images.
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3) Random Forest (RF): RF was first developed by
Breiman [54], and since then it has been a widely used
ensemble learner that can handle both classification as well
as regression problems. Compared to other classifiers, RF is
considered superior due to its ease of training, fast prediction
abilities, and interpretability [55]. RF is an ensemble
technique encompassing several decision trees. In each tree,
”n” descriptors are selected randomly from the entire feature
set [56]. This trait of random selection makes RF unbiased
and decreases the correlation between the unpruned trees
[57]. Initially, a bagging algorithm creates a training feature
set using resampled instances. Thereafter, a decision tree is
generated using a randomly selected feature vector, and the
resampled training set [58], [59]. Finally, the predictions of
all the decision trees are compiled, and the final prediction is
determined by majority voting [60].

4) Support Vector Machine (SVM): SVM comprises a set
of supervised learning techniques commonly employed for
both regression and classification tasks [61]. SVM is based on
the principle of decision planes that use decision boundaries
to ideally split data into distinct classes [62]. SVMs employ
statistical learning theory and the principle of structural risk
minimization to optimize generalization performance [43].
In SVM, the training data is grouped into two classes, and
the algorithm maximizes the distance between these classes
and the hyperplanes [63]. By leveraging ML theory, SVMs
can prevent overfitting and enhance prediction accuracy.
Consequently, SVMs often outperform other classifiers [64],
[65].

5) eXtreme Gradient Boosting (XGBOOST): XGBOOST
is one of the leading ML approaches, known for its high
speed and performance as a precursor to gradient-boosted
decision trees [47], [66]. While the performance and speed
of XGBOOST-based models can be enhanced by integrating
novel features into gradient trees [67], exploiting XGBOOST
to enhance performance is not simple. This sophistication
emerges from the several parameters involved in the classifier,
making hyper-parameter optimization both challenging and
indispensable for enhancing model performance [53].

The performance of each of the above-mentioned classifiers
was optimized by fine-tuning essential hyper-parameters. A
grid-based search together with a 10-fold cross-validation
(CV) was applied to assess the influence of each hyper-
parameter (Table S2). Overall, the classifier exhibiting the best
performance was selected.

D. Feature Selection
Selection of an optimal feature subset is desirable as

all features do not contribute equally to a robust ML-
based predictor [68]. In the present study, we used the
R implementation of two feature selection techniques i.e.
recursive feature elimination [69] and Boruta (v7.0.0) [70].
Table S3 provides the overview of the dimension size of
all 10 original feature encodings and dimension size after
applying feature selection techniques.

1) Recursive Feature Elimination (RFE): RFE works on
a backward selection protocol and avoids refitting numerous
models at individual search steps [69]. This selection process
repeatedly removes the least significant feature until a specific
subset of encodings is identified. We tested RFE on all 10
feature encodings using all five ML models. During the
RFE cycle, several subsets of the training data with variable
dimension sizes were created. These subsets were used as
input vectors for an RF-based classifier using a 10-fold CV.

2) Boruta: In the Boruta algorithm, features are selected
and ranked based on feature importance score for predictors
[70]. It creates copies of the real feature by randomly shuffling
other features known as shadow features. The relevance of
the real predictor is statistically compared to the highest
significance score of shadow variables and labeled as relevant
or irrelevant based on these scores. All irrelevant shadow
variables are subsequently eliminated. This step is repeated till
all variables are labeled as either relevant or irrelevant or for
a predefined number of iterations (maxRuns) [71]. Here in the
present study, we selected the maxRuns = 1000. Altogether,
Boruta follows a top-down procedure for suitable variables by
comparing them with an original set of features.

III. RESULTS

A. Summary of the dataset

The final non-redundant dataset consists of 1435 sequences
including 685 TP (positive) and 750 randomly selected non-TP
(negative) proteins retrieved from the MEROPS database. To
compare the over-representation of various COG categories in
the positive and negative datasets, we used EggNOG mapper
for their functional annotation [72]. A significant difference
in the few enriched categories was observed between the
two datasets (Figure 2). A major proportion (∼59%) of
TP sequences belonged to the COG category AA transport
and metabolism (E). In contrast, cell wall/membrane/envelope
biogenesis (M), lipid transport and metabolism (I), and de-
fense mechanisms (V) were the top over-represented annotated
categories in the negative dataset. About 25% of sequences
in both datasets belonged to the post-translational modifica-
tion, protein turnover, and chaperone functions (O) category.
Moreover, the number of proteins with unknown functions (S)
and proteins with no hits in the COG database (NA) were
significantly higher in the negative dataset.

B. Compositional differences between TP and non-TP se-
quences

To examine any compositional differences between TP
and non-TP enzymes, we compared the AAC of both these
datasets. Figure 3 illustrates that, of the 20 AAs, both TPs
and non-TPs are enriched with at least seven statistically
significant AAs (Wilcoxon test; p < 0.05). Among the seven
most dominant AAs in TPs, three are represented by non-
polar and aliphatic R groups containing residues including
alanine (A), glycine (G), and valine (V). The other four
residues include two polar uncharged AAs (methionine (M)
and threonine (T)), a positively charged arginine (R), and
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Fig. 2: Distribution of various COG categories in TP and non-TP datasets. The COG categories on the x-axis represent
Chromatin structure and dynamics (B); Energy production and conversion (C); Cell cycle control, cell division, and chromosome
partitioning (D); AA transport and metabolism (E); Nucleotide transport and metabolism (F); Carbohydrate transport and
metabolism (G); Coenzyme transport and metabolism (H); Lipid transport and metabolism (I); Translation, ribosomal structure,
and biogenesis (J); Transcription (K); Replication, recombination, and repair (L); Cell wall/membrane/envelope biogenesis (M);
Cell Motility (N); Posttranslational modification, protein turnover, and chaperones (O); Inorganic ion transport and metabolism
(P); Secondary metabolites biosynthesis, transport, and catabolism (Q); Function unknown (S); Signal transduction mechanisms
(T); Intracellular trafficking, secretion, and vesicular transport (U); Defense mechanisms (V); Extracellular structures (W); and
Not applicable (NA).

a negatively charged glutamic acid (E). In contrast, non-TP
sequences exhibited the dominance of residues with aromatic
groups including phenylalanine (F), tyrosine (Y), and trypto-
phan (W). Additionally, two non-polar and aliphatic R groups
containing residues, leucine (L) and proline (P) were also
over-represented in non-TPs. Among all non-polar aliphatic
AAs, proline is unique due to its five-membered ring structure.
Asparagine (N), a polar uncharged AA, and histidine (H),
a positively charged AA, also exhibited dominance in non-
TP sequences. Therefore, a significantly lower frequency of
aromatic residues in TPs could be one of the most important
characteristic features for the classification of TPs from non-
TPs. These unique compositional disparities imply that our
model may exploit the existence of distinct AAs as a feasible
way to differentiate TP from non-TP sequences.

C. Comparison of different ML classifiers using Boruta-based
optimal features

We investigated the impact of ten distinct feature encodings:
AAC, APseAAC, AutoC, CTD, CTriad, DPC, PseAAC, QSO,
SOCN, and hybrid features, in conjunction with five different
ML classifiers (KNN, NB, RF, SVM, and XGBOOST) for

distinguishing TP from non-TP sequences. Specifically, we
employed the Boruta technique to eliminate irrelevant features
for each descriptor, resulting in ten Boruta-derived optimal
feature encodings with optimal feature dimensions (see Table
S3). These optimal descriptors were then input into the five
classifiers, producing 50 models (10 Boruta-based optimal
encodings × 5 ML classifiers) using an extensive search range
(refer to Table S2) and a 10-fold CV strategy (Figures 4A-J).
The top three models, employing hybrid-based encodings and
trained with RF, SVM, and XGBOOST, achieved an ACC of
≥ 90%. Among these, the SVM-based model demonstrated the
highest MCC of 0.869, while the RF and XGBOOST models
achieved an MCC of approximately 0.800. The remaining
47 models exhibited ACC and MCC ranges of 0.576–0.889
and 0.298–0.782, respectively. The model utilizing DPC-based
optimal encodings with the KNN classifier demonstrated the
poorest performance (Figure 4F).

Next, we estimated the performance of each ML classifier
irrespective of the 10 optimal feature encodings in predicting
TP sequences. The result shows that SVM performs best
among the other four classifiers in terms of both ACC and
MCC (Table I). Notably, the average ACC of the SVM
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Fig. 3: Differences in amino acid composition between TP and non-TP sequences.

TABLE I: Performance metrics for different feature selection techniques. Values in parentheses represent the standard deviations.

∗FST Metrics KNN NB RF SVM XGBOOST

Boruta

Accuracy 0.730 (0.080) 0.725 (0.047) 0.828 (0.053) 0.847 (0.048) 0.826 (0.048)
Sensitivity 0.891 (0.091) 0.745 (0.138) 0.778 (0.056) 0.819 (0.053) 0.809 (0.049)
Specificity 0.582 (0.176) 0.707 (0.103) 0.873 (0.052) 0.873 (0.046) 0.842 (0.051)
MCC 0.503 (0.128) 0.461 (0.097) 0.656 (0.106) 0.693 (0.096) 0.652 (0.097)

RFE

Accuracy 0.701 (0.096) 0.713 (0.059) 0.824 (0.049) 0.797 (0.110) 0.840 (0.041)
Sensitivity 0.895 (0.095) 0.738 (0.143) 0.761 (0.054) 0.696 (0.262) 0.826 (0.039)
Specificity 0.522 (0.229) 0.690 (0.154) 0.881 (0.050) 0.888 (0.050) 0.852 (0.047)
MCC 0.451 (0.156) 0.440 (0.105) 0.649 (0.100) 0.656 (0.110) 0.679 (0.083)

∗FST, feature selection technique.

classifier is about 2–12% higher compared to the other four
classifiers. Likewise, the corresponding average MCC of the
SVM-based classifier is approximately 4–23% higher than
KNN, NB, RF, and XGBOOST-based classifiers.

Additionally, independent of the classifier used, we also
determined the best-performing feature descriptor to classify
TP sequences. The analysis suggests that hybrid-based optimal
features are the top encodings and achieved an average ACC of
0.886 and MCC of 0.773, followed by CTD which achieved an
ACC of 82% and MCC of 0.643 (Table II). The performance
of other encodings in terms of ACC varied between 72–80%.

D. Comparison of different ML classifiers using RFE-based
optimal features

In addition to the Boruta method, we employed the RFE
technique to select optimal features for each feature descriptor
across 10 feature encodings, subsequently inputting each into
five ML classifiers as previously mentioned. This approach
also resulted in the generation of 50 models (10 RFE-based
optimal encodings × 5 ML classifiers), which were evaluated
using a 10-fold CV. Figures 5A-J illustrate the performance of

each feature descriptor trained with the five ML classifiers. The
results indicate that the top-performing model utilized XG-
BOOST with RFE-based optimal hybrid encodings, achieving
an ACC of 0.905 and an MCC of 0.811. Notably, it was
the only model to achieve an ACC above 90% under this
feature selection technique. However, its ACC and MCC
are 2.89% and 5.80% lower than the best model under the
Boruta technique. In addition, at least three models under
the Boruta method exhibited an ACC ≥90% (Figure 4J),
whereas only one model under the RFE method achieved an
ACC ≥90% (Figure 5J). The remaining 49 models exhibited
performance in terms of ACC ranging from 0.489 to 0.882,
with corresponding MCC scores between 0.101 and 0.763.
Consistent with the findings from the previous section, the
DPC-based optimal features with the KNN classifier once
again exhibited the worst-performing model when utilizing the
RFE technique (Figure 5F).

We then compared the performance of five ML classifiers
irrespective of the 10 optimal feature encodings in classifying
TP from non-TP sequences. From Table I, we observe that
XGBOOST outperforms the other four classifiers in both ACC
and MCC when RFE-based optimal encodings are exploited.
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Fig. 4: Performance comparison of five ML classifiers and Boruta-based optimal feature encodings on CV (panels A to J) and
independent validation (panels K to T) for AAC, APseAAC, AutoC, CTD, CTriad, DPC, PseAAC, QSO, SOCN, and Hybrid
feature descriptors, respectively.

However, the average ACC achieved by XGBOOST is slightly
lower than the average ACC displayed by the Boruta-based
SVM model. Additionally, the Boruta-based SVM model
exhibited a 2% higher MCC value than the average MCC
achieved by RFE-based XGBOOST models.

Next, when we attempted to determine the best-performing
RFE-based optimal encodings for the prediction of TP and
non-TP sequences independent of the classifier. We observe
that four encodings, namely, QSO, CTD, ApseAAC, and
PseAAC achieved an average ACC of ≥ 0.800 (Table III). This
is about 8% lower than the average ACC exhibited by Boruta-
based hybrid encodings. The results suggest that Boruta-based
optimal hybrid features can better differentiate between TP and
non-TP sequences.

E. Comparison of ML classifiers using two different optimal
feature sets on an independent validation dataset (IVDS)

IVDS was used to assess the performance of 50 models
using optimal encodings derived from the Boruta algorithm
(Figures 4K-T). The results of independent validation and 10-
fold CV exhibited consistency in the ACC scores of these two
datasets when Boruta-based optimal feature encodings were
utilized. For example, the SVM-based model using optimal
hybrid encodings was the top performer achieving the best
ACC of 0.934, and 0.888 during training and independent
validation, respectively (Figures 4J, 4T). Similarly, the KNN
classifier based on optimal DPC encodings which ranked last
in the training stage also exhibited the worst performance dur-
ing independent validation. In addition to the similarities, some
differences were also observed. The second-best performing
model during 10-fold CV was based on RF and optimal hybrid
encodings with an ACC of 0.905. However, this model ranked
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TABLE II: Comparison of 10 Boruta-based optimal encodings on five different ML classifiers. Values in parentheses represent
the standard deviations.

Feature ACC Sn Sp MCC
AAC 0.786 (0.046) 0.831 (0.064) 0.746 (0.139) 0.586 (0.069)
APseAAC 0.794 (0.083) 0.778 (0.114) 0.810 (0.090) 0.591 (0.168)
AutoC 0.779 (0.060) 0.795 (0.137) 0.764 (0.137) 0.566 (0.110)
CTD 0.817 (0.065) 0.829 (0.046) 0.806 (0.146) 0.643 (0.120)
CTriad 0.761 (0.042) 0.819 (0.063) 0.707 (0.137) 0.535 (0.063)
DPC 0.771 (0.125) 0.890 (0.082) 0.663 (0.311) 0.588 (0.182)
PseAAC 0.795 (0.880) 0.772 (0.155) 0.817 (0.093) 0.595 (0.175)
QSO 0.800 (0.071) 0.841 (0.058) 0.763 (0.168) 0.614 (0.120)
SOCN 0.721 (0.023) 0.668 (0.027) 0.769 (0.027) 0.440 (0.047)
Hybrid 0.886 (0.050) 0.860 (0.078) 0.909 (0.053) 0.773 (0.101)

TABLE III: Comparison of 10 RFE-based optimal encodings
on five different ML classifiers.

Features ACC Sn Sp MCC
AAC 0.786 0.831 0.746 0.586
APseAAC 0.809 0.789 0.827 0.621
AutoC 0.780 0.795 0.767 0.574
CTD 0.813 0.831 0.796 0.635
CTriad 0.693 0.780 0.613 0.425
DPC 0.733 0.839 0.637 0.506
PseAAC 0.807 0.779 0.833 0.617
QSO 0.813 0.842 0.786 0.636
SOCN 0.720 0.662 0.773 0.438
Hybrid 0.768 0.653 0.874 0.664

4th on IVDS. In contrast, the 2nd top-performing model used
SVM and optimal QSO-based features during independent
validation. However, this model ranked 7th on the training
dataset.

Similarly, when we compared the performance of all 50
models using RFE-based optimal encodings, we again ob-
served consistent performance during CV (Figures 5A-J) and
independent validation (Figure 5K-T). Specifically, the top
three models on training and IVDS were based on optimal
hybrid, QSO, and PseAAC encodings, and their ACC scores
on IVDS are 0.888, 0.863, and 0.856, respectively. Among
these, the model using hybrid encodings was based on XG-
BOOST, whereas the other two encodings utilized an SVM
classifier. Although both feature selection techniques displayed
consistent performance during CV and independent validation,
the performance achieved by the SVM model using Boruta-
based optimal hybrid encodings was 3–5% better than the
XGBOOST model using RFE-based optimal hybrid encodings.
Therefore, the SVM model based on optimal hybrid encodings
derived from the Boruta algorithm was selected as the final
model.

F. Comparison of Boruta-based optimal encodings with con-
trol and excluded features on the training dataset

Next, to feature dimension reduction, we attempted to
assess if the optimal encodings exhibit better performance
than control (all features) or excluded descriptors for each
feature, we developed several classification models based on

control and excluded features using the training dataset. The
comparative analysis demonstrates a minor improvement in
the performance of most encodings, and a significant increase
in the performance of KNN and SVM-based classifiers when
optimal hybrid encodings were used to build the models
(Figure S1). Specifically, a 30–40% increase compared to
control and excluded features was observed in these two
models on Boruta-based optimal encodings. Similarly, about
a 16% increase in performance was observed when optimal
DPC-based encodings were tested using an SVM classifier.
Interestingly, there was a 1–2% decrease in the performance
of a few models when optimal feature sets were used.
These include XGBOOST-based models using AutoC, DPC,
PseAAC, and QSO encodings. Similarly, a 1% decrease was
observed using CTD encodings when an RF-based classifier
was used to generate the model. In contrast, the performance
of all the models decreased substantially when models were
generated using excluded features (Figure S1). These data
suggest that the Boruta algorithm identified relevant encodings
that improve performance and dimension reduction.

G. Model availability

At present, there is no freely accessible tool or standalone
software leveraging sequence-based optimal features for pre-
dicting TP proteins. This limitation hinders the application of
innovative methods in effectively complementing the exper-
imental characterization and annotation of these sequences.
To address the disparity between sequencing and the func-
tional annotation of potential TP proteins, we have developed
a user-friendly web server that facilitates the identification
of these proteins. This tool is openly available to users at
https://procarb.org/TP-ML/.

IV. DISCUSSION

Thirty years ago, Muggleton et al. [73] exploited an ML-
based approach to predict the secondary structure of the pro-
tein. Since then, ML methodologies have undergone significant
advancements in their capacity to learn from intricate datasets
and construct diverse prediction models [74]. Over this period,
the utilization of ML in protein science has witnessed a sig-
nificant increase in addressing the problems related to protein
structure prediction [75], protein classification [33], [76], [77],
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Fig. 5: Performance comparison of five ML classifiers and RFE-based optimal feature encodings on CV (panels A to J) and
independent validation (panels K to T) for AAC, APseAAC, AutoC, CTD, CTriad, DPC, PseAAC, QSO, SOCN, and Hybrid
feature descriptors, respectively.

peptide therapeutics [37], [78], [79], or prediction of binding
sites [80], [81]. In light of this, ML applications have been
successfully developed for predicting different proteases such
as sortases [32], the C10 family [34], and asparagine peptide
lyases [35]. Considering the importance of TPs in regulating
cellular function and the absence of existing ML-based models
for predicting TPs from their primary AA sequences, we
have constructed an SVM-based predictor, named TP-ML,
to distinguish TPs from non-TPs utilizing sequence-derived
optimal features.

To construct TP-ML, we systematically generated and as-
sessed the performance of different classifiers using a non-
redundant balanced dataset. We selected the model based on its
consistent performance across CV and independent validation
experiments. Given that high-dimensional feature sets often
contain irrelevant or superfluous elements, potentially affecting
classifier performance [82], we employed two distinct feature

selection techniques: (i) Boruta and (ii) RFE, to select the opti-
mal feature subset for each descriptor. Subsequently, we input
these subsets into five different ML classifiers and compared
their performance. This rigorous comparative analysis enabled
us to identify and adopt the most appropriate ML classifier
equipped with optimal features.

TP-ML represents the only freely available predictor to
predict TP proteins. While it demonstrates satisfactory per-
formance, future advancements could involve improving the
model’s robustness such as constructing models using larger
datasets, exploring alternative feature encodings, and develop-
ing ensemble-based models [83]. Furthermore, TP-ML cannot
currently classify distinct members of TP families (e.g., T1,
T2, T3, etc.), primarily due to the current scarcity of sequences
representing specific TP types in public databases. Therefore,
with the availability of more data in the future, we intend to
develop a two-layer hybrid model [32]–[34]. The first layer
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will predict whether a given sequence is a TP protein, and
the second layer will leverage the predicted TP sequences to
categorize them into specific TP family members.

V. CONCLUSION

TPs are a group of proteolytic enzymes characterized by
the presence of a threonine residue situated in their active
sites. These enzymes serve as the central catalytic components
within the proteasome, a huge protein-degrading machin-
ery. Their critical roles are recognized in diseases including
Alzheimer’s and cancer. However, the identification and char-
acterization of TPs face significant experimental challenges.
To address this issue, we have proposed TP-ML to effectively
classify TP from non-TP sequences using optimal hybrid en-
codings extracted from their primary AA sequences and SVM
classifier. The proposed TP-ML method demonstrated stable
performance during both training and independent evaluation.
It is worth noting that TP-ML is the first method to predict TP
proteins. To facilitate usage, we have made it publicly available
as a web server at https://procarb.org/TP-ML/, providing the
community with a tool to identify potential putative TPs from
experimental results.
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