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 Introduction

The sequencing of DNA molecules enables the precise identi-
fication and order of nucleotides. These techniques include 
any method or technology that is used to determine the order 
of the four bases—adenine (A), guanine (G), cytosine (C), 
and thymine (T)—in a strand of DNA.  Massively parallel 
sequencing, also known as next-generation sequencing (NGS), 
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is a method of simultaneously sequencing millions of frag-
ments of DNA (or complementary DNA) simultaneously. 
These advancements have revolutionized the field of molecu-
lar biology [2–4] and are routinely used in a wide variety of 
research and clinical settings. Indispensable knowledge 
attained with modern DNA sequencing technology has been 
instrumental to unveil the plethora of previously hidden facts 
not only in the medical field but also in plant biology, forensic 
science, and evolution [3, 5].

Since the inexplicable relationship between genetic insta-
bility and tumorigenesis was proposed by Nowell in 1976 [6], 
progress in cancer genomics has strengthened and provided 
strong evidence to support this fundamental hypothesis. Most 
genetic disorders have been associated with modifications  
within regions that affect the coding of proteins, and are often 
divided into three types of categories: (1) single- gene disor-
der, (2) chromosomal disorders, and (3) complex disorders. 
There are many challenges associated with characterizing a 
genetic disorder, creating a unique niche for developing 
appropriate bioinformatics methodologies.

New developments in molecular biology techniques, 
which are often used to gain insight into genetic disorders, 
are generating massive amounts of data that need pro-
cessed and refined prior to being incorporated into elec-
tronic health records (EHR) or clinical decision support 
applications [7]. Although these new techniques, such as 
NGS, are gaining momentum in the clinical field, there are 
no gold standards for clinical data analysis, interpretation, 
and integration that can be broadly applied to all disorders. 
Technical  advancements in NGS led to a dramatic decrease 
in sequencing costs, mostly due to increase in the volume of 
data generated over the same period of time, to the point 
where an entire human genome in 2018 can be sequenced 
for less than $1000 [8], which ultimately increases its acces-
sibility to researchers. Unfortunately, this expansion in data 
production has not been accompanied by an equivalent 
improvement in sequencing fidelity, as the chemistry 
needed for speed and volume currently comes at the price 
of precision, which is of little consequence when looking 
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for sequence changes that are heterozygous or homozy-
gous. To be clear, no amount of “deep sequencing” will be 
able to recover true mutations occurring at frequencies 
below the error rate of the sequencing platform itself as 
stochastic errors are continually generated at a constant 
rate [9]. Yet, the promise of genome-driven information in 
medical science is undoubtedly inspiring as witnessed by 
the targeted therapies based on the detection of oncogenic 
drivers [10, 11].

The corollary to the volumes of sequence data generated 
is the necessity for subsequent computational strategies to 
handle the previously incomprehensible volumes of data. 
Ultimately, there is a unique niche in the informatics field, 
especially in bioinformatics, to develop and deliver robust 
methodologies capable of analyzing the massive amount of 
data being generated by new technologies. Bioinformatics, 
an interdisciplinary field, requires the intersection of com-
puter science, statistics, mathematics, biology, and engineer-
ing, with the ultimate goal of being applied in the clinical 
field for translating large biological datasets into diagnostic 
or predictive knowledge, clearly requiring a team science 
approach.

In Table  6.1, we list a brief history of the advances and 
applications of DNA (cDNA) sequencing techniques, as well 
as bioinformatic analyses, along with their applicability and 
challenges in detecting the minimal residual disease (MRD) 
in leukemia patients, which is highlighted in Table 6.2.

 Cancer Genetics

The French-American-British (FAB) classification is a 
morphology- based system that was introduced several 
decades ago to help classify specific leukemias into subgroups 
[12]. Unfortunately, throughout the last several years, it has 
become apparent that a general classification system, such as 
FAB, does not apply broadly and appropriately apply to all 
cancer types and age ranges, as the genetic landscape between 
adult and pediatric cancers can be much different [13].
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Table 6.1 History Ssequencing

Year
Lead researcher/
association Highlight

1865 Gregor Mendel Uses peas to figure out the funda-
mental of principles of heredity

1871 Friedrich Mie-
scher

Identified the presence of “nuclein” 
(now known as DNA) and associated 
proteins, in the cell nucleus

1904 Walter Sutton 
and Theodor 
Boveri

Proposed the chromosome theory of 
heredity after finding that chromo-
somes occur in matched pairs, one 
inherited from the mother and one 
from the father

1910 Albrecht Kossel Discovered the five nucleotide bases, 
adenine, cytosine, guanine, thymine, 
and uracil

1950 Erwin Chargaff Suggested pairing pattern of the bases 
A, C, G, and T

1952 Alfred Hershey 
and Martha 
Chase

Demonstrated DNA, rather than pro-
tein, carries genetic information

1953 James Watson 
and Francis Crick

Published the double helix structure 
of DNA

1961 Marshall Niren-
berg, Har Gobind 
Khorana, and col-
leagues

Identified how to read the DNA 
sequences in blocks of three “codon.” 
Each codon codes for an amino acid 
which is added to the protein during 
translation

1965 Robert Holley 
and colleagues

Sequenced yeast tRNA

1970 Ray Wu Used primer extension to read a short 
sequence of DNA for the first time

1972 Walter Fiers Sequenced first whole gene coding for 
a MS2 virus protein

1973 Walter Gilbert 
and Allan Maxam

Developed a method to sequence 
DNA using chemicals to cut DNA at 
certain bases
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Table 6.1 (continued)

Year
Lead researcher/
association Highlight

1975 Frederick Sanger Introduced “plus and minus” method 
for DNA sequencing using gels to 
separate DNA by size

1977 Frederick Sanger Establishes dideoxy sequencing meth-
odology

1983 Kary Mullis Developed polymerase chain reaction 
(PCR)

1984 Fritz Pohl Developed nonradioactive sequencing 
platform

1985 Alec Jeffreys Developed a method for DNA profil-
ing

1986 Leray Hoad and 
Applied Biosys-
tem (ABI)

Developed first automated sequencer

1990 Human Genome 
Project (world’s 
largest collab-
orative biological 
project)

Human Genome Project is launched

1995 Fleischmann RD 
and colleagues

Bacterial genome sequenced (Hae-
mophilus influenzae)

Fraser CM and 
colleagues

Bacterial genome sequenced (Myco-
plasma genitalium)

1996 Mostafa Ronaghi Introduced pyrosequencing, next-
generation “sequencing by synthesis” 
method

Applied Biosys-
tem (ABI)

Introduced first commercial sequenc-
ing using capillary electrophoresis

International col-
laboration

Sequenced the genome of yeast,  
Saccharomyces cerevisiae

(continued)
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Year
Lead researcher/
association Highlight

1998 John Sulston and 
Bob Waterston

Published the genome of the nema-
tode worm, Caenorhabditis elegans

Solexa Inc. Developed sequencing by synthesis 
method that uses fluorescent dye

1999 Part of Human 
Genome Project

First human chromosome 22 is 
sequenced

2000 Genome of Drosophila melanogaster 
sequenced

University of 
California, Santa 
Cruz

Launch of the UCSC Genome 
Browser

2001 Human Genome 
Project

Human Genome Project publishes 
first draft human genome sequence

2002 International 
Mouse Genome 
Sequencing Con-
sortium

Mouse genome published

The International 
HapMap Project

Project is launched to generate a “cat-
alogue” of common human genetic 
variations and their locations

2003 Human Genome 
Project

Completed and confirmed humans 
have approximately 20,000–25,000 
genes

National 
Human Genome 
Research Insti-
tute

Launched the ENCODE project with 
the aims to identify and characterize 
all the genes in the human genome

2005 454 Life Sciences The 454 system, based on pyrose-
quencing becomes the first com-
mercially available next- generation 
sequencer

Table 6.1 (continued)
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In 1976, Nowell highlighted the strong relationship 
between genetic instability and tumorigenesis [6], which pro-
vided the foundation for studying precise genetic alterations 
and their association with cancer. The majority of genetic 
analyses for cancer have been conducted using traditional 
cytogenetic techniques, such as karyotyping, and cytogenetic 
markers have played a major role in the diagnosis and clas-
sification of leukemias. The field of cytogenetics was initiated 
in 1956 [14] with the discovery and description of the number 
of chromosomes in a diploid human cell. There are several 
different techniques within the cytogenetic field that have 
been previously reviewed [15]. Overall, sensitivity and speci-
ficity are optimized when multiple cytogenetic methods are 
performed concurrently to overcome the limitations of any 

Year
Lead researcher/
association Highlight

The International 
HapMap Project

Map of human genetic variations 
published

2007 SOLid Systems Launched a sequencing technology 
based on ligation

2008 1000 Genomes 
Project

Aims to sequence the whole genomes 
of a large number of people (2500)

Cancer Genome 
Consortium

Comprehensive analysis of cancer 
genome

Ley TJ Sequences first cancer (AML) 
genome characterized by NGS

2009 Third-generation sequencing with sin-
gle-molecule fluorescence technology 
is launched with Helicos sequencer

2011 Pacific Biosci-
ences

Launched first commercial single- 
molecule real-time technology

2012 Oxford Nanopore 
Technologies

Commercialization of the portable 
nanopore sequencing methods

Table 6.1 (continued)
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single method. Therefore, it is essential to have broad and 
precise methods to integrate multiple data sources for char-
acterizing MRD to facilitate risk stratification and therapeu-
tic selection [16].

 History of DNA Sequencing

In 1910, Albrecht Kossel discovered the five nucleotide bases: 
adenine, cytosine, guanine, thymine and uracil, as the funda-
mental building blocks of nucleic acids [17]. Four decades 
later, Erin Chargaff recognized the pairing pattern of these 
nucleotides in DNA and RNA [17]. Robert Holley and col-
leagues (1965) were accredited for sequencing the first ever 
full nucleic acid molecule, 77 nucleotides of the yeast, 
Saccharomyces cerevisiae, alanine tRNA with a proposed 
cloverleaf structure [18]. It took more than 5 years to extract 
enough tRNA from the yeast to identify the sequence of 
nucleotide residues using specific ribonucleases, two- 
dimensional chromatography, and spectrophotometric proce-
dures [18]. Initially, scientists focused their sequencing efforts 
on the readily available populations of RNA species because 
of the following properties: (i) bulk production in culture, (ii) 
not complicated by a complementary strand, and (iii) consid-
erably shorter than DNA [19, 20]. The laborious and expen-
sive nature of the sequencing drove the continuous 
development and refinement of subsequent sequencing 
methods.

Fred Sanger and colleagues at Cambridge were also 
actively working on methods for sequencing DNA molecules. 
They developed a technique based on the detection of radio-
labeled partially-digested fragments after two- dimensional 
fractionation [21], allowing addition of nucleotides to the 
growing pool of ribosomal and transfer RNA sequences. 
Using a primer extension method in year 1968, Ray Wu and 
Dale Kaiser sequenced a short sequence of DNA for the first 
time [22]. However, the actual determination of bases was 
still restricted to small sequences of DNA because of the 
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requirement for radioactive and hazardous chemicals. These 
continuous efforts resulted in generating the first complete 
protein-coding gene sequence, which was the coat protein of 
bacteriophage MS2  in 1972 [23], and the first complete 
3569-nucleotide-long genome sequence of the bacteriophage 
MS2 RNA in 1976 [24].

Two influential techniques in the mid-1970s emerged 
which later gave a new dimension to the field of molecular 
biology. The two techniques were Alan Coulson and Sanger’s 
“plus and minus” technique, using DNA polymerase to 
sequentially add radiolabeled nucleotides, and Allan Maxam 
and Walter Gilbert’s chemical cleavage technique [25–27]. 
Both of these techniques moved away from 2D fractionation 
toward polyacrylamide gel electrophoresis, which provided 
better base resolution. The development of these two meth-
ods is often described as the foundation of modern sequenc-
ing but was supplanted in 1977 with Sanger’s “chain 
termination” or “dideoxy technique,” which quickly became 
the most widely used sequencing method over the next  
several decades.

The full potential of Sanger sequencing was not realized 
until the integration of a series of seminal improvements 
occurred. First, radioactive isotope labels were replaced with 
variably colored fluorescent tags for each nucleotide, which 
enabled the reaction to occur in a single vessel instead of 
four. A second key improvement was the use of capillary 
tube-based electrophoresis which provided better resolution, 
required less equipment space, and decreased the time 
required. Following these improvements, Smith et al. (1986) 
at Applied Biosystems Instruments™ (ABI) designed the 
first automated capillary sequencing system and later intro-
duced the first commercial automated DNA sequencer [28].

These retrospectively named “first-generation” sequencers 
were the first to incorporate computer-based data acquisition 
and analysis and were capable of producing reads >300 bp. 
However, to analyze longer DNA molecules, “shotgun 
sequencing” was developed by separately cloning and 
sequencing overlapping DNA fragments. Coinciding with the 
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discovery of polymerase chain reaction (PCR) and the launch 
of the Human Genome Project, a series of enhancements 
allowed machine cycle times to decrease from 18 h to 3 h [29].

In 1992, the Institute for Genomic Research (TIGR) in 
Rockville, Maryland, founded by J. Craig Venter, pioneered 
the industrialization of an automated sequencer, with a focus 
on studying various genomes [2, 30]. With the establishment 
of both the first Affymetrix® and GeneChip® microarrays in 
1996, expression studies involving various genes in prokary-
otes and eukaryotes were possible [31]. By the end of 1999, 
TIGR had generated 83 million nucleotides of cDNA 
sequence, 87,000 human cDNA sequences, and the complete 
genome sequences of Haemophilus influenzae [32] and 
Mycoplasma genitalium [33]. The platform resulted in the 
early completion of the Human Genome Project in 2003.

 Next-Generation Sequencing Application

With the completion of the human genome sequence, the 
clinical and research appetite for comparative sequencing 
data expanded overnight, rapidly overwhelming the capacity 
and cost structure of dideoxy base sequencing. Various 
groups sought to bring new instruments to market (Fig. 6.1) 
that offered various strategies for (i) the parallelization of 
many sequencing reactions, (ii) the preparation of amplified 
sequencing libraries prior to sequencing, (iii) library amplifi-
cation on miniature surfaces (solid surfaces, beads, emulsion 
droplets), (iv) direct monitoring of the nucleotides via 
advanced microfluidics and imaging, (v) reduced per-nucleo-
tide costs, and (vi) decreased machine cycle times. However, 
early NGS platforms were designed to sequence entire 
genomes from single subjects rather than selected regions 
from multiple subjects. Thus, targeted sequencing for the cod-
ing regions of the genome (i.e., the exome) or regions of inter-
est was facilitated via probe hybridization of fragmented DNA 
or by customized PCR amplification. Figure  6.1 highlights 
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common library preparation protocols, sequencing platforms, 
and bioinformatic considerations for performing an NGS 
project.

Short-read sequencing (SRS) typically produces reads that 
are 50–600 bp in length and has become the dominant type of 
NGS available today through multiple vendors (ref 34). SRS 
often results in scaffolding gaps due to bias from high GC 
content, repeat sequences, and missing insertions. There are 
several advantages of SRS such as high throughput, low cost 

Library preparation Sequencing platforms Bioinformatics

DNA
Whole exome (hybridization)

Whole genome
Anchored multiplex PCR

RNA
Poly-A tail bulk transcriptome

Ribosomal RNA depletion
Parallel analysis of RNA ends

Anchored multiplex PCR

Next generation
Roche 454 pyrosequencing

Illumina sequencers
Sequencing by oligonucleotide ligation

and detection (SOLiD)
ion torrent

DNA nanoball sequencing

Third-generation sequencing
Single molecule real time (SMRT)

helicos sequencing
NGS by electron microscopy

Fourth-generation sequencing
Nanopore sequencing

BioNano genomics

Data analysis
Data quality checks

Genome Alignment, Variant
Detection and Annotation

Association Analysis

MRD considerations
Library depth
Sample purity

Allele Fraction MRD

Figure 6.1 Overview of next-generation sequencing. Library prepa-
ration box: Library preparations are specific for DNA or RNA 
sequencing applications. Different capture techniques are available 
and determine what type of mutations can be captured for sequenc-
ing. Sequencing platforms box: The first instruments capable of per-
forming massive parallelization of sequencing were termed 
next-generation sequencers. Third- generation instruments focus on 
long-read sequencing techniques. Fourth-generation sequencers 
involve unique technologies that preserve the spatial localization of 
the DNA/RNA molecules. Bioinformatics box: Raw next-generation 
sequencing data is unstructured and massive, requiring special ana-
lytical pipelines. When detecting minimal residual disease, it is 
essential to consider characteristics about the sample (purity and 
allele fraction MRD), sequencing technology (library depth require-
ments), and capture technique
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per base, and a low raw read rate [35]. However, the short- 
read length complicates genome alignment leading to false- 
positive and false-negative variant calling [36, 37]. The error 
rate of approximately 1% primarily occurs due to dephasing 
of nucleotide additions (most frequently due to adding an 
erroneous base but can also occur due to missing base addi-
tion or adding an extra base inappropriately) to random 
sequences at random clusters across the flow cell, more so in 
the later sequencing cycles. Furthermore, de novo assembly 
approaches can be challenging with SRS and require enhanced 
algorithms for performing these operations, such as 
SOAPdenovo [38]. Assemble of a large genome, especially 
for non- model organisms, generated from SRS are limited as 
long- range linking information is not available [39].

In contrast, newer long-range sequencing (LRS) tech-
niques produce reads between 10 Kb and 40 Kb [3, 4, 40, 41]. 
While the long read makes alignment and phasing more trac-
table, these platforms have historically suffered from lower 
total output, relatively high error rates and cost. Unfortunately, 
these approaches are not presently sufficient to detect very 
rare mutations in heterogeneous nucleic acid samples, but 
that may change with additional improvements.

There are several variant algorithm detection methods, 
including FreeBayes [42], that are specific for SRS data. The 
advantages for SRS for MRD include low error rate and the 
ability to generate deep coverage for a specific region of the 
genome. Therefore, SRS has dominated the field for cancer 
genomics as variant detection is more accurate with SRS over 
LRS techniques that have a higher error rate and less sensi-
tive limit of detection. Furthermore, as error-corrected 
sequencing (Overview Fig.  6.2) and single-cell sequencing 
continue to develop, the advantages of SRS increase.

More than 70% of genetic variations seen in humans are 
non-SNP variations and can be missed easily with short-read 
sequencing [34]. Long-read sequencing enables reads longer 
than 10  kb, which improves alignment to the reference 
genome, high consensus accuracy, uniform coverage, and 
detection of epigenetic modifications. In addition, long-read 
sequencing is beneficial in transcriptomic analyses as it allows 
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detection of splice isoforms with a high level of confidence 
without requiring assembly. High costs of long-read sequenc-
ing and high error rates are the major hurdle for adopting 
these platforms as a global sequencing platform.

 Bioinformatics and NGS

Bioinformatics is an interdisciplinary field focused on devel-
oping methods for translating one or more large biological 
datasets, inherent in NGS, into applicable knowledge. Through 
translational computational discoveries, clinicians have 
gained a better understanding of genetic alterations associ-
ated with many disorders, as a priori knowledge is not 
required. With the publication of several best practices guide-
lines for NGS, basic processing steps have been well estab-
lished in the scientific community (Overview Fig.  6.3). 

Step 1: Library preparation and sequencing

Step 2: Error correction

Step 3: Variant detection

Individual molecules tagged with
Unique molecular indexes (UMIs)

UMIs create read families for
error correction (EC)

EC reads aligned to genome for
variant detection

Figure legend

DNA molecule

UMIs

True variant

Sequencing error

Figure 6.2 Workflow for error-corrected sequencing. By tagging 
each DNA molecule with a unique molecular index (Step 1), read 
families can be generated, by aligning reads with the same UMI, and 
used to determine sequencing errors versus low allelic variants (Step 
2). Error-corrected sequences are then aligned to a reference 
genome and used to calculate variants (Step 3)
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However, as the field continues to leverage more complex 
NGS strategies in cancer genetics, bioinformatics has become 
the bottleneck in terms of expertise, infrastructure, and time 
to results. Currently, there is no gold standard computational 
pipeline that will work for all analysis, and oftentimes each 
project needs specific tailoring of the algorithms, which 
requires rigorous validation of computational processes and 
biological results.

Next Generation Sequencing Data 

Report Variant Interpretation and 
Applicability

Genome Alignment
and Processing

Variant Detection
and Annotation

Filtering and Statistical Analysis

Bioinformatics Workflow for 
Next Generation Sequencing

a b

Publicly available bioinformatic applications for data processing 

Technique Tool Reference
fastqc https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

samtools https://doi.org/10.1093/bioinformatics/btp352

picardtools http://broadinstitute.github.io/picard/

Genome Analysis Toolkit (GATK) https://genome.cshlp.org/content/20/9/1297

bwa http://bio-bwa.sourceforge.net

bowtie2 http://www.nature.com/articles/nmeth.1923

GATK https://genome.cshlp.org/content/20/9/1297

samtools https://doi.org/10.1093/bioinformatics/btp352

picardtools http://broadinstitute.github.io/picard/

haplotyper https://genome.cshlp.org/content/20/9/1297

VarScan2 https://academic.oup.com/bioinformatics/article/25/17/2283/210190

MuTect https://www.nature.com/articles/nbt.2514

Pindel https://academic.oup.com/bioinformatics/article/25/21/2865/2112044

breakdancer https://www.nature.com/articles/nmeth.1363

SnpEff http://snpeff.sourceforge.net/SnpEff_paper.pdf

ANNOVAR https://academic.oup.com/nar/article/38/16/e164/1749458

dbSNP https://www.ncbi.nlm.nih.gov/pmc/articles/PMC29783/

ClinVar https://academic.oup.com/nar/article/46/D1/D1062/4641904

Clinical Pharmacogenetics
Implementation Consortium (CPIC)

https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1038/clpt.2010.279

ClinVar https://academic.oup.com/nar/article/46/D1/D1062/4641904

Clinical decision support

NGS library quality checks

Genome aligners

Alignment processing

Variant detection

Variant annotation

Annotation resources

Figure 6.3 Bioinformatics workflow for next-generation sequenc-
ing assays. (a) NGS generates massive raw unstructured sequence 
data (green box) that is used for downstream processing. The most 
common file format for this data is a fastq file. The NGS reads are 
aligned to a reference genome and processed for variant detection 
annotation (purple boxes). The final output from a computational 
pipeline is a variant call file (VCF) that contains all of the relevant 
metadata per variant (dark orange box). (b) Numerous publicly 
available tools resources are available for data analysis. *maybe do 
a supplemental table linked here with full webpage and refer-
ences? [43]
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 Quality Assessment of NGS Libraries

In 2012, the US Centers for Disease Control and Prevention 
(CDC) published the guidelines assembled by a national 
working group, termed Next-Generation Sequencing: 
Standardization of Clinical Testing or Nex-StoCT, to lead an 
initiative for defining platform-independent guidelines for 
using NGS in clinical practice [44]. The Supplementary 
Guidelines published by Nex-StoCT highlight key quality 
metrics that should be considered when establishing and vali-
dating a clinical NGS workflow. There are several publicly 
available tools for performing these types of quality control 
assessment. For example, fastqc, a platform-independent 
NGS quality tool (Babraham Institute, https://www.bioinfor-
matics.babraham.ac.uk/projects/fastqc/), can import data 
from alignment files or raw NGS data and reports an 
 overview of quality statistics that may indicate problems or 
biases in the NGS data. There are ten key statistical modules 
within the fastqc pipeline that report a value of “pass,” “warn-
ing,” or “fail” for the NGS library, consistent with the guide-
lines published by the CDC.  We have briefly summarized 
each of these ten metrics below.

The sequence length, or insert size, is a basic analysis, and 
skewing from the expected insert size can indicate poor 
library construction, which needs to be carefully considered 
when analyzing data for novel InDels. This is a relatively 
simple calculation that is considered along with other basic 
statistics such as the total number of sequences and the maxi-
mum and minimum sequence length. The library depth is key 
for understanding limits of detection and should be taken 
into consideration during data analysis and experimental 
design phases. One of the remarkable aspects of genomics is 
its scalability. Depending upon the mutation frequency 
threshold (e.g., 5% vs 1% vs 0.1% or lesser) being interro-
gated, the sequencing strategy and library depth for an MRD 
assay will be quite different compared to germline sequenc-
ing requirements.

When analyzing a sample for MRD, it is essential to exam-
ine the per sequence quality scores to determine if the library 
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has a portion of reads with low-quality values that might skew 
results. Ideally, poor quality reads should be a very small per-
centage of the total raw data. Occasionally the 3′ end of NGS 
reads can be of poor quality when sequencing by synthesis 
because sequences in a cluster can elongate at slightly differ-
ent rates, which will slowly lead to desynchronizationand 
quality issues [45]. These low-quality bases should therefore 
be “trimmed” or “clipped” to help with accurate alignment 
and variant detection. Furthermore, overrepresented 
sequences are any sequences that may be overrepresented in 
the NGS reads, i.e., adaptors, and it is important to trim these 
types of sequences from the raw NGS data to improve 
genome alignment. Some alignment software, such as bwa-
mem, enable soft clipping and can “trim” these adapter 
sequences during genome  alignment. However, it is good 
practice to determine the level of adapter contamination in a 
library file prior to downstream analysis. Several publicly 
available tools, such as cutadapt [46], are established for just 
these purposes and improve the efficiency of downstream 
NGS analysis [47].

Analyzing the per base sequence content statistic is 
another key metric to analyze. Typically, a sample is flagged if 
the difference between A, T, G, or C is greater than 10% in 
any position. However, some targeted or enriched NGS data-
sets, such as exomes from hybridization capture, are known to 
display discreet, position-specific compositional biases [48]. 
In addition, nucleotide composition is known to more likely 
be G + C rich in first exons, and general variation basis within 
the genome and at the gene level are noted [49]. These known 
skews within coding regions can cause a targeted sequencing 
library to be inappropriately flagged as poor quality, so it is 
important to recognize the difference between targeted 
sequencing statistics compared to random bulk.

The per base GC content statistics calculates the GC con-
tent across the length of each sequence and compares it to a 
modeled normal distribution of GC content. Typically, it is 
important for all libraries to have the sum of the deviations 
from the normal distribution represented <30% of the reads. 
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The per base N content statistic calculates the percentage of 
base calls at each position for which N, or no base call, 
appears. A base is called “N” when the sequencing quality is 
too low to accurately call a base. The number of “N” bases 
should be limited and typically only at the 5′ or 3′ end of the 
reads. A library with a large portion of bases called as N indi-
cates overall poor sequencing, and the library should be 
flagged and re-sequenced.

The sequence duplication level statistics counts the degree 
of duplication for every sequence in a library. This is impor-
tant as libraries with high sequence duplication levels indi-
cate low complexity (i.e., not sampling enough total molecules) 
along with a likely enrichment bias during library prepara-
tion. However, certain types of library preparations, such as 
RNA-seq, are known to have some bias that can lead to high 
duplication levels, whereas for exomes, the number of dupli-
cated reads should be minimal. Duplicate reads can be 
flagged and eliminated or normalized during computational 
analysis to avoid false-positive variant calling and is part of 
the best practice guidelines for downstream processing.

The Kmer statistics measures the number of each 7-mer at 
each position in the library. It then uses a binomial test to 
look for significant deviations from an even coverage at all 
positions [50]. Any Kmers with a positional biased enrich-
ment are reported. Libraries which derive from random prim-
ing can show Kmer bias at the start of the library due to an 
incomplete sampling of the possible random primers 
(Babraham Institute).

 Genome Alignment and Processing

High-quality genome alignment of NGS reads is essential for 
accurate detection of germline, somatic, and MRD variants. 
There are numerous publicly available genome aligners, includ-
ing but not limited to bwa-mem [51], bowtie2 [52], and 
FreeBayes [42], as well as de novo assembly packages that do 
not require forced reference mapping. Genome alignment 
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works well for single-nucleotide variants (SNVs), small InDels, 
and structural variant (SV) detection when combined with 
pair-end data. DNA and RNA can be aligned to a genome, 
although RNA mapping requires an aligner capable of gapped 
alignment, such as tophat [53]/bowtie2 [52], due to the struc-
ture of DNA (introns) compared to RNA molecules.

The Broad Institute has developed a publicly available 
software package, Genome Analysis Toolkit (GATK), that 
provides a suite of algorithms required for processing and 
analyzing alignment files. GATK best practices [54] include 
several steps for improving genome alignment. The first step 
in processing the alignment files is to mark duplicate reads 
because they potentially represent a clonal amplification 
rather than a randomly sheared DNA fragment.

Next, the alignment files are analyzed for potential inter-
vals that need realignment based on known genetic altera-
tions. These regions undergo a realignment step for 
optimization. Finally, the alignment file undergoes a recali-
bration of base quality scores based on the adjustments from 
the proceeding steps. After recalibration, the quality scores, in 
theory, should be more accurate because the new score is 
closer to the actual probability of mismatching to the refer-
ence genome.

After the alignment files are appropriately processed, it is 
important to assess the quality of the overall genome align-
ment. There are several different criteria that can be used, 
such as percentage of reads mapped to the genome, but it is 
important to consider the depth and breadth of coverage. 
Coverage calculations are especially important when trying 
to understand variant calling capabilities and limitations. The 
depth of coverage is how many times a nucleotide was 
sequenced, whereas the breadth of coverage is the average 
coverage per base per the number of total bases queried or 
the sequence interval.

 Variant Detection and Annotation

Single-nucleotide polymorphisms (SNPs) naturally occur 
between healthy individuals with estimates ranging from 1 in 
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1000 to 1  in 1500 nucleotides [55–57]. Collectively, SNPs 
result in ~3 million nucleotide differences using the estimated 
genome size of ~3 billion nucleotides (haploid). Additionally, 
somatic mutations are difficult to detect because they occur 
at low frequencies in the genome and might only be present 
in a small fraction of the DNAmolecules [58]. Often, tools 
used for detecting germline SNPs are not recommended for 
detecting SNVs. The sensitivity and specificity of an algo-
rithm to detect a somatic mutation are dependent on several 
characteristics such as sequencing depth, local sequencing 
error rate, and allelic fraction.

There are several publicly available algorithms, including 
MuTect [59] and VarScan [60], for detecting somatic variants. 
Algorithms like MuTect simultaneously analyze both a non- 
cancer and cancer alignment file from the same patient, con-
sisting of four key steps: (1) removal of low-quality sequence 
data, (2) variant detection in the tumor sample using a 
Bayesian classifier or probabilistic classifier, (3) filtering to 
remove false positives resulting from correlated sequencing 
artifacts that are not captured by the error model, and (4) 
designation of the variants as somatic or germline by a sec-
ond Bayesian classifier.

There are multiple approaches for detecting SV using 
NGS data. For example, de novo assembly, with either the 
complete dataset or unmapped reads, is one strategy for 
detecting large SV [61]. One limitation to this approach is 
that it can only detect homozygous SV because detecting 
heterozygous SV requires assembly of haplotype sequences, 
which is a complex problem that is not fully resolved.

Reference mapping strategies are another approach and 
include concepts around split pair-end read mapping, read 
coverage depth analysis, or analysis of inconsistent insert size 
of paired-end reads. These approaches first require the NGS 
reads to be mapped to a reference genome, and then the 
alignment files are analyzed for genomic variants. The detec-
tion of SV using NGS data requires accurate prediction of 
copy, content, and structure. Often algorithms developed for 
detecting SVs are specific for a class of SVs, making it a 
necessity to incorporate multiple SV algorithms into the 
workflow.
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Common algorithms include Pindel, BreakDancer, and 
VarScan2. Pindel can detect breakpoints of large deletions, 
medium-sized insertions, inversions, and tandem duplications 
by leveraging a pattern growth approach [62]. Previously, 
Pindel has been cited for detecting an internal tandem dupli-
cation (ITD) in the FLT3 gene by using a pattern growth 
approach to analyze NGS data misaligned to the reference 
genome due to biological differences.

BreakDancer predicts five types of structural variants: 
insertions, deletions, inversions, inter- and intrachromosomal 
translocations, and the results from BreakDancer can be 
directly feed into Pindel to help enhance the analysis as a 
whole. VarScan2 is another package capable of detecting SVs, 
including copy number variations (CNVs) and InDels [63]. 
Ultimately, the analysis pipeline requires the integration of 
all of these variant callers, because leukemias are genetically 
heterogeneous diseases that are not characterized by a few 
variants or even the same class of variants.

The majority of the variant detection algorithms output a 
variant call file (VCF), which needs further annotation. There 
are several publicly available tools for performing robust 
somatic variant annotation, and recently the Association 
for Molecular Pathology published standards and guidelines 
for interpreting such annotations [64]. The majority of these 
algorithms are capable of annotating SNVs with putative 
functional consequences, reporting functional importance 
scores, and identifying previously reported SNVs and allele 
frequencies [64]. Oftentimes these annotations are applied in 
downstream filtering strategies to prioritize relevant variants. 
SnpEff is another publicly available algorithm for annotat-
ing VCFs [65] and provides a suite for predicting the effect 
of variants. Typically, researchers are interested in variants 
that alter the sequence of proteins, such as a missense or 
frameshift. However, it is noticeable that predicting whether 
or not a variant is  damaging is still a complex issue that 
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needs further refinement, which was recently highlighted by 
the Critical Assessment of Genome Interpretation (CAGI) 
experiments [66].

 Variant Filtering and Association Analyses

NGS assays generate massive amounts of variant data, includ-
ing normal population heterogeneity, sequencing  artifacts, 
and potentially disease-associated variation. Ultimately, an 
effective filtering strategy for identifying disease- associated 
variation is required, which must be accompanied by appro-
priate false-negative and false-positive rates. VCF annota-
tion packages (reviewed above) enable a researcher to build 
an effective filtering strategy to focus on variants that are 
high quality and of clinical relevance [67, 68].

Typically, filtering strategies are implemented for small 
sample sizes, and often more complex association statistics, 
like genome-wide association studies (GWAS), are not pos-
sible. Recently, several algorithms have been designed for 
performing associations between a set of rare variants and 
phenotypes from NGS data, including SNP-set (sequence) 
kernel association test (SKAT) [69]. Of interest, SKAT is 
capable of analyzing the cumulative effect of rare and com-
mon variants and is well suited for associating NGS data to a 
phenotype of interest.

Due to the rarity of the mutations in question, filtering 
strategies for MRD are complex and different compared to 
the filtering strategies employed to detect high-frequency 
somatic variants and germline variants or SNPs. Thus, while 
not mandatory, in order to effectively analyze MRD, it is 
essential to quantify the cumulative profile of low AF vari-
ants at time of diagnosis if at all possible, akin to ΔN flow 
cytometry, and track the presence of these and other new 
mutations at multiple time points post therapy.
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 DNA Sequencing and Applications in MRD

The three most common NGS DNA sequencing approaches 
in oncology are whole genome sequencing (WGS), whole 
exome sequencing (WES), or a targeted gene panel approach 
(Table 6.2). Each has strengths and weaknesses. WES enriches 
for sequences encoding proteins, which represents ∼1–2% of 
the human genome [70]. WES works well for common 
sequence changes in coding regions, such as germline variants 
and high-frequency somatic mutations in cancer, but is not 
adequate for MRD below 2% VAF as the error rates of NGS 
preclude identification below that threshold (Table  6.2). 
More importantly, WES ignores the noncoding, regulatory 
regions of the genome and is incapable of detecting the 
breadth of mutational diversity common in cancer, such as 
cryptic gene fusions and complex structural variants.

WGS generates the sequence of the entire genome, not 
just the 1–2% in protein-coding regions. This is of obvious 
benefit for detecting cancer-related mutations [71]. WGS 
generates massive amounts of data per individual and is still 
fairly expensive for a clinical assay. Furthermore, the compu-
tational infrastructure required to analyze WGS is complex 
and beyond the majority of most clinical labs, even in the 
commercial space. Similar to WES, this technique works well 
for germline variants and detection of common somatic 
mutations. Beyond WES, WGS will identify duplications, 

Table 6.2 NGS and MRD
NGS 
library 
preparation Analyte

Advan-
tages MRD

Disadvantage 
MRD

Recom-
mended  
for MRD

Hybridiza-
tion

DNA Targeted 
assay
Compatible 
with error 
correction
Cheap

Limitations in  
variant capture  
for structural  
variants, cryptic 
gene fusions, and 
large insertions/
deletions

Yes
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Table 6.2 (continued)
NGS 
library 
preparation Analyte

Advan-
tages MRD

Disadvantage 
MRD

Recom-
mended  
for MRD

Whole 
genome

DNA Bulk 
sequencing 
no a priori 
knowledge 
required

Expensive
Variant capture 
limitations
Limit of detec-
tion not suited for 
MRD
High error rate

No

Anchored 
multi-
plex PCR 
(AMP)

DNA / 
RNA

Targeted 
assay
Compatible 
with error 
correction
Cheap
Diverse 
variant 
capture

High sequencing 
depths required

Yes

Poly-A tail 
bulk tran-
scriptome

RNA Bulk 
sequencing 
no a priori 
knowledge 
required

High error rate
Expensive for 
depth require-
ments
Limitations in  
variant capture

No

Ribosomal 
RNA  
depletion

RNA Bulk 
sequencing 
no a priori 
knowledge 
required

High error rate
High sequencing 
depth required
Expensive
Limitations in  
variant capture

No

Single-cell 
sequencing

RNA Robust 
clonal 
analysis

High error rate
Sequencing depth 
requirements are 
cost prohibitive
Limitations in vari-
ant capture

Yes
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DNA fusions, inversions, large InDels, and other SVs that 
would not be visible by WES.  However, genomes typically 
don’t get high depth of sequencing as a cost-saving measure, 
which obviates their utility for MRD (Table  6.2). For both 
WES and WGS, two critical considerations in the clinical 
space are whether they are reimbursed by third-party payors 
and what is the obligation of the individual ordering the test 
to relate incidental findings. For these reasons, many third-
party payors refuse payment, and many clinicians are reticent 
to order tests that are much more broad in scope than the 
cancer-related question at hand. However, some academic 
centers have established genetic counseling services or other 
protocols to relate the transfer of incidental genetic findings 
to patients and families.

For MRD, targeted panels are currently better suited due 
to being more customizable for specific disease-related loci 
and cost-efficacy. Targeted panels use a variety of strategies to 
enrich for target sequences such as nucleic acid hybridization, 
rolling circle amplification, molecular inversion probes, and 
various PCR-based enrichment strategies. Each has advan-
tages and disadvantages, but the main metric is “on/off tar-
get” percentage. At the best of times, these various strategies 
(other than plain PCR) only “capture” somewhere between 2 
and 7% of the molecules available. For MRD, this needs to be 
taken into careful consideration. For example, to detect a 
mutation at 0.0001 (1:10,000), one needs to query at least 
10,000 different molecules. If one starts with 5,000,000 mol-
ecules (~8.2  μg) and 95% are not captured, that leaves 
250,000 molecules, so a mutation at 0.0001 should be seen 25 
times. Obviously, the amount of starting material becomes 
substantial, and often rate-limiting, quite quickly.

 Error-Corrected DNA Sequencing

Given that leukemias are a heterogenous mixture of sub-
clones [72], error-corrected sequencing (ECS) enables the 
tagging of a single DNA molecule with a unique molecular 
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index [72–75]. Utilizing this approach, stochastic errors are 
introduced by the sequencing platforms. As demonstrated by 
Young et al. [73], targeted gene panels incorporating a unique 
molecular index are capable of detecting clonal hematopoie-
sis involving known oncogenes in healthy adults [73].

The main aspects of error-corrected sequencing as 
described by Young et al. are (i) aggregating all of the reads 
arising from a single molecule as demonstrated by sharing the 
same random index (e.g., “read family”) to computationally 
subtract stochastic sequencing artifacts and (ii) an analysis of 
the error rate at each base by establishing a negative bino-
mial distribution. Read family aggregation into a single 
“error-corrected consensus sequence” is done prior to genome 
alignment. After variant detection, a second analysis can be 
done to calculate the error rate at each position and further 
filter variants to remove false positives that are actually 
sequencing artifacts [73].

Different ECS strategies must be implemented to identify 
SNVs and/or InDels at low allelic frequencies [73, 76] compared 
to SVs. Precise quantification of SVs in DNA involves ampli-
fying a target locus with many different amplification primers 
on each side of the putative lesion or breakpoint. This results 
in many possible amplicons, which can then be aligned via de 
novo assembly rather than forced reference alignment. A 
major aspect of applying this technology for MRD (Table 6.2) 
is the ability to link the data to either an earlier time point 
from the same subject, and to connect the variants of interest 
to external resources for rigors filtering strategies.

 RNA Sequencing and Applications in MRD

Various library techniques exist for RNA sequencing, includ-
ing poly-A tail capture for mRNA, ribosomal RNA deple-
tion, parallel analysis of RNA ends (PARE-seq), and targeted 
gene panels [77, 78]. Bulk RNA sequencing techniques pro-
cess thousands of cells at once and represent the “average” of 
all of the molecules within the mixed population sequenced. 
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The traditional analysis for RNA-seq was differential gene 
expression, but over the last several years, the community has 
developed extensive computational pipelines for detecting 
variants [79].

RNA sequencing enables the detection of several variant 
classes that are not easily detectable via DNA sequencing, 
including cryptic gene fusions, exon usage, and allele-specific 
expression. These types of variants are quickly being 
 associated with various cancers [80] and are of interest for 
MRD applications [81] either alone or in combination with 
other diagnostic tools. Poddighe et al. (2018) recently devel-
oped an MRD assay for CBFB-MYH11 gene fusion. 
Interestingly, the fusion was also detected at time of birth in 
the same subject when analyzing cord blood [81] highlighting 
the growing realization that “cancer-related” mutations are 
far more common in the general population than previously 
appreciated (Young AL et  al., Nat Commun 2016) because 
only ill people have historically undergone such careful 
analyses. As capture techniques and computational pipelines 
continue to improve our ability to detect these types of vari-
ants, our understanding of their biology is quickly changing.

Similar to gene panels for DNA sequencing, targeted 
RNA gene panel sequencing strategies enable an in-depth 
analysis of transcripts of interest. A PCR amplification strat-
egy, single or opposing primers, enables the capture of cryptic 
gene fusions and will hopefully help to improve our under-
standing of intron retention in cancer patients [82]. Targeted 
RNA panels also have the advantage, compared to bulk 
sequencing methods, of incorporating unique molecular 
indexes, which enables error correction.

 Error-Corrected RNA Sequencing

Similar to DNA-ECS, RNA-ECS is currently best applied to 
targeted gene panels. In contrast, the RNA-ECS consensus 
read family sequence is aligned to the genome using a gap 
reference aligner and analyzed for small InDels and SNVs. 
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For more complex variants, including cryptic gene fusions, 
alternative exon usage, structural variants, and novel tran-
script structure, such as retained intron, a de novo assembly 
approach from multiple, variably sized amplicons across the 
breakpoint is required [83], compared to a force reference 
alignment. There are several publicly available de novo 
assemblers available for this type of work, such as ABySS 
[84]. One major limitation of ECS, whether for RNA or 
DNA, is the inability to co-localize mutations within the same 
cellular background. The identified clonal mutations are 
often so rare that (a) the overall difference in the abundance 
and genes that are mutated between heathy and diseased 
individuals is minimal, (b) making the likelihood of multiple 
mutations co-occurring to be statistically highly unlikely, but 
biologically critical. One could imagine new mutations being 
identified serially in a patient treated for leukemia. The effect 
size of these new mutations may range from negligible, if 
occurring alone at a low frequency, to catastrophic, if co- 
occurring in a clone or subclone of the original leukemia. 
ECS can only make inferences as to the relatively likelihood 
of mutational co-occurrence.

 Single-Cell Sequencing

Against this context, the field of cancer genomics will quickly 
transition to sequencing techniques that enable the genomic 
or epigenomic characterization of an individual cell, provid-
ing higher resolution of co-occurring mutations within the 
same cell and have even lead to the discovery of new cell 
types [85]. Processing for single-cell RNA sequencing (sc- 
RNA- seq) is quite different than traditional transcriptome 
sequencing. Currently, RNA preservation is key such that the 
first step is isolation of viable, single cells from the tissue of 
interest. For dissociation of single cells from solid tumors, this 
can effect RNA quality and requires special handling proce-
dures compared to storage for DNA sequencing projects.
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The application of sc-RNA-seq for MRD has not yet been 
fully realized because current RNA sequencing on these plat-
forms only queries dozens of bases at the 3′ end of an mRNA 
molecule. Thus, it is quite good at quantifying transcripts but 
cannot uniformly quantify mutations residing further 
upstream in the mRNA molecule. As these technologies 
mature and become more amenable to MRD analyses, it will 
be important to consider sequencing depth requirements and 
number of cells assayed [86].

References

 1. BBC NEWS | science/nature | what they said: genome in quotes.
 2. Kulski JK.  Next-generation sequencing  — an overview of the 

history, tools, and “Omic” applications; 2016
 3. Levy SE, Myers RM. Advancements in next-generation sequenc-

ing. Annu Rev Genomics Hum Genet. 2016;17(1):95–115.
 4. Srinivasan S, Batra J. Four generations of sequencing- is it ready 

for the clinic yet? J Next Gener Seq Appl. 2014;1:107.
 5. Ari Ş, Arikan M. Next-generation sequencing: advantages, dis-

advantages, and future. In:  Plant omics: trends and applications. 
Cham: Springer; 2016. p. 109–35.

 6. Nowell PC.  The clonal evolution of tumor cell populations. 
Science. 1976;194(4260):23–8.

 7. Fan J, Han F, Liu H. Challenges of big data analysis. Natl Sci Rev. 
2014;1(2):293–314.

 8. Kruglyak KM, Lin E, Ong FS. Next-generation sequencing and 
applications to the diagnosis and treatment of lung Cancer. Adv 
Exp Med Biol. 2016;890:123–36.

 9. https://dx.doi.org/10.1093%2Fnar%2Fgks1443.
 10. Walter FM, Emery JD.  Genetic advances in medicine: has the 

promise been fulfilled in general practice? Br J Gen Pract. 
2012;62(596):120–1.

 11. Landau DA, Carter SL, Getz G, Wu CJ.  Clonal evolution 
in hematological malignancies and therapeutic implications. 
Leukemia. 2014;28(1):34.

 12. Niederhuber J, Armitage J, Doroshow J, Kastan M, Tepper 
J.  Abeloff’s clinical oncology. 5th ed. Philadelphia: Saunders; 
2013. p. 2224.

E. L. Crowgey and N. Mahajan

https://dx.doi.org/10.1093/nar/gks1443


187

 13. The molecular landscape of pediatric acute myeloid leukemia 
reveals recurrent structural alterations and age-specific muta-
tional interactions | nature medicine.

 14. THE CHROMOSOME NUMBER OF MAN  - TJIO  - 1956  - 
Hereditas - Wiley Online Library.

 15. Speicher MR, Carter NP.  The new cytogenetics: blur-
ring the boundaries with molecular biology. Nat Rev Genet. 
2005;6(10):782.

 16. Pui C-H, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk strati-
fication, and therapy of pediatric acute Leukemias: an update. J 
Clin Oncol. 2011;29(5):551–65.

 17. Admin. The history of DNA timeline. DNA worldwide. 2014.
 18. Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M, 

Merrill SH, et al. Structure of a ribonucleic acid. Science (80- ). 
1965;147(3664):1462–5.

 19. Buermans HPJ, den Dunnen JT.  Next generation sequencing 
technology: advances and applications. Biochim Biophys Acta 
Mol basis Dis. 2014;1842(10):1932–41.

 20. Heather JM, Chain B. The sequence of sequencers: the history of 
sequencing DNA. Genomics. 2016;107(1):1–8.

 21. Sanger F, Brownlee GG.  Barrell BG.  A two-dimensional frac-
tionation procedure for radioactive nucleotides. J Mol Biol. 
1965;13(2):373–98.

 22. Wu R, Kaiser AD.  Structure and base sequence in the 
cohesive ends of bacteriophage lambda DNA.  J Mol Biol. 
1968;35(3):523–37.

 23. Jou WM, Haegeman G, Ysebaert M, Fiers W.  Nucleotide 
sequence of the gene coding for the bacteriophage MS2 coat 
protein. Nature. 1972;237(5350):82.

 24. Fiers W, Contreras R, Duerinck F, Haegeman G, Iserentant D, 
Merregaert J, et al. Complete nucleotide sequence of bacterio-
phage MS2 RNA: primary and secondary structure of the repli-
case gene. Nature. 1976;260(5551):500.

 25. Sanger F, Coulson AR.  A rapid method for determining 
sequences in DNA by primed synthesis with DNA polymerase. J 
Mol Biol. 1975;94(3):441–8.

 26. Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, 
Fiddes JC, et  al. Nucleotide sequence of bacteriophage φX174 
DNA. Nature. 1977;265(5596):687.

 27. Maxam AM, Gilbert W.  A new method for sequencing 
DNA. Proc Natl Acad Sci U S A. 1977;74(2):560–4.

Chapter 6. Advancements in Next-Generation Sequencing



188

 28. Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell 
CR, et al. Fluorescence detection in automated DNA sequence 
analysis. Nature. 1986;321(6071):674.

 29. Ansorge WJ. Next-generation DNA sequencing techniques. New 
Biotechnol. 2009;25(4):195–203.

 30. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos 
MH, Xiao H, et al. Complementary DNA sequencing: expressed 
sequence tags and human genome project. Science (80- ). 
1991;252(5013):1651–6.

 31. Bumgarner R.  Overview of DNA microarrays: types, applica-
tions, and their future. Curr Protoc Mol Biol. 2013; Chapter 
22:Unit 22.1. doi: https://doi.org/10.1002/0471142727.mb2201s101.

 32. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness 
EF, Kerlavage AR, et  al. Whole-genome random sequencing 
and assembly of Haemophilus influenzae Rd. Science (80- ). 
1995;269(5223):496–512.

 33. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, 
Fleischmann RD, et al. The minimal gene complement of myco-
plasma genitalium. Science (80- ). 1995;270(5235):397–404.

 34. A map of human genome variation from population scale 
sequencing. Nature. 2010;467(7319):1061–73.

 35. Caspar SM, Dubacher N, Kopps AM, Meienberg J, Henggeler C, 
Matyas G. Clinical sequencing: from raw data to diagnosis with 
lifetime value. Clin Genet:n/a–a.

 36. Derrien T, Estellé J, Sola SM, Knowles DG, Raineri E, Guigó R, 
et al. Fast computation and applications of genome Mappability. 
PLoS One. 2012;7(1):e30377.

 37. Mandelker D, Schmidt RJ, Ankala A, Gibson KM, Bowser M, 
Sharma H, et al. Navigating highly homologous genes in a molec-
ular diagnostic setting: a resource for clinical next-generation 
sequencing. Genet Med. 2016;18(12):1282.

 38. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, et  al. De novo 
assembly of human genomes with massively parallel short read 
sequencing. Genome Res. 2010;20(2):265–72.

 39. The Long and the Short of DNA Sequencing. GEN.
 40. Liu L, Li Y, Li S, Hu N, He Y, Pong R, et al. Comparison of next-gen-

eration sequencing systems. Bio Med Res Int. 2012;2012:251364.
 41. Illumina | sequencing and array-based solutions for genetic 

research.
 42. Garrison E. Freebayes: Bayesian haplotype-based genetic poly-

morphism discovery and genotyping; 2018.

E. L. Crowgey and N. Mahajan

https://doi.org/10.1002/0471142727.mb2201s101


189

 43. Wang K, Li M, Hakonarson H. ANNOVAR: Functional annota-
tion of genetic variants from high-throughput sequencing data. 
Nucleic Acids Res. 2010;38(16):e164.

 44. Gargis AS, Kalman L, Berry MW, Bick DP, Dimmock DP, 
Hambuch T, et  al. Assuring the quality of next-generation 
sequencing in clinical laboratory practice. Nat Biotechnol 
[Internet]. 2012;30(11):1033–6. Available from: http://www.
nature.com/articles/nbt.2403.

 45. https://doi.org/10.1038/nbt.1585.
 46. Martin M.  Cutadapt removes adapter sequences from high-

throughput sequencing reads. EMBnet J. 2011;17(1):10–2.
 47. Del FC, Scalabrin S, Morgante M, Giorgi FM. An extensive eval-

uation of read trimming effects on Illumina NGS data analysis. 
PLoS One. 2013;8(12):e85024.

 48. Kozlowski P, de Mezer M, Krzyzosiak WJ. Trinucleotide repeats 
in human genome and exome. Nucleic Acids Res [Internet]. 
2010;38(12):4027–39. Available from: https://academic.oup.com/
nar/article-lookup/doi/10.1093/nar/gkq127.

 49. Louie E, Ott J, Majewski J.  Nucleotide frequency variation 
across human genes. Genome Res. 2003;13(12):2594–601.

 50. Babraham Institute, https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/.

 51. Burrows-Wheeler Aligner.
 52. Bowtie 2: fast and sensitive read alignment.
 53. Trapnell C, Pachter L, Salzberg SL.  TopHat: discovering 

splice  junctions with RNA-Seq. Bioinformatics. 2009;25(9): 
1105–11.

 54. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, 
Hartl C, et  al. A framework for variation discovery and geno-
typing using next-generation DNA sequencing data. Nat Genet 
[Internet]. 2011;43(5):491–8. Available from: http://www.nature.
com/articles/ng.806.

 55. Schneider JA, Pungliya MS, Choi JY, Jiang R, Sun XJ, Salisbury 
BA, et al. DNA variability of human genes. Mech Ageing Dev 
[Internet]. 2003;124(1):17–25. Available from: http://www.ncbi.
nlm.nih.gov/pubmed/12618002.

 56. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein 
LD, Marth G, et al. A map of human genome sequence variation 
containing 1.42 million single nucleotide polymorphisms. Nature 
[Internet]. 2001;409(6822):928–33. Available from: http://www.
nature.com/doifinder/10.1038/35057149.

Chapter 6. Advancements in Next-Generation Sequencing

http://www.nature.com/articles/nbt.2403
http://www.nature.com/articles/nbt.2403
https://doi.org/10.1038/nbt.1585
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkq127
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkq127
https://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.nature.com/articles/ng.806
http://www.nature.com/articles/ng.806
http://www.ncbi.nlm.nih.gov/pubmed/12618002
http://www.ncbi.nlm.nih.gov/pubmed/12618002
http://www.nature.com/doifinder/10.1038/35057149
http://www.nature.com/doifinder/10.1038/35057149


190

 57. Jorde LB, Wooding SP.  Genetic variation, classification and 
“race”. Nat Genet [Internet]. 2004;36(11s):S28–33. Available 
from: http://www.nature.com/doifinder/10.1038/ng1435.

 58. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, 
Sougnez C, et al. Sensitive detection of somatic point mutations 
in impure and heterogeneous cancer samples. Nat Biotechnol 
[Internet]. 2013;31(3):213–9. Available from: http://www.nature.
com/doifinder/10.1038/nbt.2514.

 59. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, 
Sougnez C, et al. Sensitive detection of somatic point mutations 
in impure and heterogeneous cancer samples. Nat Biotechnol. 
2013;31(3):213.

 60. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin 
L, et al. VarScan 2: somatic mutation and copy number altera-
tion discovery in cancer by exome sequencing. Genome Res. 
2012;22(3):568–76.

 61. Li Y, Zhang Q, Yin X, Yang W, Du Y, Hou P, et al. Generation of 
iPSCs from mouse fibroblasts with a single gene, Oct4 and small 
molecules. Cell Res [Internet]. 2011;21(1):196–204. Available 
from: http://www.nature.com/articles/cr2010142.

 62. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pat-
tern growth approach to detect break points of large deletions 
and medium sized insertions from paired-end short reads. 
Bioinformatics [Internet]. 2009;25(21):2865–71. Available 
from: https://academic.oup.com/bioinformatics/article-lookup/
doi/10.1093/bioinformatics/btp394.

 63. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin 
L, et al. VarScan 2: Somatic mutation and copy number altera-
tion discovery in Cancer by exome sequencing. Genome Res 
[Internet]. 2012;22(3):568–76. Available from: http://genome.
cshlp.org/cgi/doi/10.1101/gr.129684.111.

 64. https://doi.org/10.1016/j.jmoldx.2016.10.002.
 65. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, 

et al. A program for annotating and predicting the effects of sin-
gle nucleotide polymorphisms, SnpEff. Fly (Austin) [Internet]. 
2012;6(2):80–92. Available from: http://www.tandfonline.com/
doi/abs/10.4161/fly.19695.

 66. https://doi.org/10.1002/humu.23290.
 67. Carson AR, Smith EN, Matsui H, Brækkan SK, Jepsen K, 

Hansen J-B, et al. Effective filtering strategies to improve data 
quality from population-based whole exome sequencing studies. 
BMC Bioinf. 2014;15:125.

E. L. Crowgey and N. Mahajan

http://www.nature.com/doifinder/10.1038/ng1435
http://www.nature.com/doifinder/10.1038/nbt.2514
http://www.nature.com/doifinder/10.1038/nbt.2514
http://www.nature.com/articles/cr2010142
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp394
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp394
http://genome.cshlp.org/cgi/doi/10.1101/gr.129684.111
http://genome.cshlp.org/cgi/doi/10.1101/gr.129684.111
https://doi.org/10.1016/j.jmoldx.2016.10.002
http://www.tandfonline.com/doi/abs/10.4161/fly.19695
http://www.tandfonline.com/doi/abs/10.4161/fly.19695
https://doi.org/10.1002/humu.23290


191

 68. Yost SE, Smith EN, Schwab RB, Bao L, Jung H, Wang X, et al. 
Identification of high-confidence somatic mutations in whole 
genome sequence of formalin-fixed breast cancer specimens. 
Nucleic Acids Res. 2012;40(14):e107.

 69. Ionita-Laza I, Lee S, Makarov V, Buxbaum JD, Lin X. Sequence 
kernel association tests for the combined effect of rare and com-
mon variants. Am J Hum Genet. 2013;92(6):841–53.

 70. Wang Z, Liu X, Yang B-Z, Gelernter J. The role and challenges 
of exome sequencing in studies of human diseases. Front Genet. 
2013;4:160.

 71. Sharma S, Kelly TK, Jones PA.  Epigenetics in cancer. 
Carcinogenesis. 2010;31(1):27–36.

 72. Schmitt MW, Fox EJ, Prindle MJ, Reid-Bayliss KS, True 
LD, Radich JP, et  al. Sequencing small genomic targets 
with high efficiency and extreme accuracy. Nat Methods. 
2015;12(5):423.

 73. Young AL, Challen GA, Birmann BM, Druley TE. Clonal hae-
matopoiesis harbouring AML-associated mutations is ubiqui-
tous in healthy adults. Nat Commun. 2016;7:12484.

 74. Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein 
B. Detection and quantification of rare mutations with massively 
parallel sequencing. Proc Natl Acad Sci. 2011;108(23):9530–5.

 75. Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb 
LA.  Detection of ultra-rare mutations by next-generation 
sequencing. Proc Natl Acad Sci. 2012;109(36):14508–13.

 76. Zheng Z, Liebers M, Zhelyazkova B, Cao Y, Panditi D, Lynch KD, 
Chen J, Robinson HE, Shim HS, Chmielecki J, Pao W, Engelman 
JA, Iafrate AJ, Le LP. Anchored multiplex PCR for targeted 
next-generation sequencing. Nat Med. 2014;20(12):1479–84. 
https://doi.org/10.1038/nm.3729.

 77. German MA, Pillay M, Jeong D-H, Hetawal A, Luo S, 
Janardhanan P, et al. Global identification of microRNA–target 
RNA pairs by parallel analysis of RNA ends. Nat Biotechnol. 
2008;26(8):941.

 78. Zhao W, He X, Hoadley KA, Parker JS, Hayes DN, Perou 
CM.  Comparison of RNA-Seq by poly (a) capture, ribosomal 
RNA depletion, and DNA microarray for expression profiling. 
BMC Genomics. 2014;15:419.

 79. Piskol R, Ramaswami G, Li JB.  Reliable identification of 
genomic variants from RNA-Seq data. Am J Hum Genet. 
2013;93(4):641–51.

 80. https://www.medscape.com/viewarticle/555206.

Chapter 6. Advancements in Next-Generation Sequencing

https://doi.org/https://doi.org/10.1038/nm.3729
https://www.medscape.com/viewarticle/555206


192

 81. Poddighe PJ, Veening MA, Mansur MB, Loonen AH, Westers 
TM, Merle PA, et al. A novel cryptic CBFB-MYH11 gene fusion 
present at birth leading to acute myeloid leukemia and allowing 
molecular monitoring for minimal residual disease. Hum Pathol 
Case Reports. 2018;11(Supplement C):34–8.

 82. Dvinge H, Bradley RK. Widespread intron retention diversifies 
most cancer transcriptomes. Genome Med. 2015;7:45.

 83. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman 
SD, et al. De novo assembly and analysis of RNA-seq data. Nat 
Methods. 2010;7(11):909.

 84. Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, et al. 
De novo transcriptome assembly with ABySS.  Bioinformatics. 
2009;25(21):2872–7.

 85. Villani A-C, Satija R, Reynolds G, Sarkizova S, Shekhar K, 
Fletcher J, et al. Single-cell RNA-seq reveals new types of human 
blood dendritic cell, monocytes, and progenitors. Science (80- ). 
2017;356(6335):eaah4573.

 86. Haque A, Engel J, Teichmann SA, Lönnberg T. A practical guide 
to single-cell RNA-sequencing for biomedical research and clini-
cal applications. Genome Med. 2017;9:75.

E. L. Crowgey and N. Mahajan


